EMPOWERING THE NEXT GENERATION -INVESTMENT IN PREVENTABLE INFANT DEATHS

BY A HEALTHY START ____ March 27, 2024, Taipei

HIPA Health Promotion Adminis

Advancement and Future Directions in Pediatric Critical Care

Vinay Nadkarni MD, MS, FCCM

2023 President, Society of Critical Care Medicine

Professor, Department of Anesthesiology, Critical Care and Pediatrics The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine

*I will ensure my presentation promotes thoughtful inclusion of underrepresented communities and content relevant to diversity and equity in continuing education activities.

Vinay Nadkarni MD, FCCM Disclosures: <u>No Relevant Conflicts</u>

Employment: University of Pennsylvania <u>President 2023-2024: Society of Critical Care Medicine</u>

Research Grants:

National Institutes of Health / Department of Defense (Cardiac Arrest, Cardiopulmonary bypass, Airway Registry, Mitochondrial Medicine) US Department of Defense (mitochondrial monitoring, pGz) American Heart Association-Laerdal Foundation/RQI Partners (Academy for Resuscitation of Children) Zoll Medical (CPR Learning Laboratory Network: PediRES-Q) Nihon-Kohden (Capillary refill, Respiratory Function Monitoring) Philips Medical (waveform analysis) Hearthero/Defibtech (waveform analysis) Agency for Healthcare Research and Quality (Intubation Registry) Science Advisory Boards (Volunteer)

- International Liaison Committee on Resuscitation (ILCOR)
- AHA ECC and AHA Get with the Guidelines-Resuscitation
- Board Member, Citizen CPR Foundation

Children's Hospital of Philadelphia[•] Center for Pediatric Resuscitation

EMPOWERING THE NEXT GENERATION -INVESTMENT IN PREVENTABLE INFANT DEATHS

BY A HEALTHY START March 27, 2024, Taipei

EMPOWERING THE NEXT GENERATION -INVESTMENT IN PREVENTABLE INFANT DEATHS BY A HEALTHY START _____ March 27, 2024, Taipei

, , , ,

HPA Health Promotion Administration, Ministry of Health and Welfare Respiratory Failure, Sepsis, Shock and Trauma...

#1 Killers

...in Taiwan, ...in Philadelphia ...in APEC countries, ...Worldwide!

Low- and middle-income countries bear the highest burden of sepsis

Rudd KE et al. Global, regional, and national sepsis incidence and mortality, 1990-2017; analysis

for the Global Burden of Disease Study. Lancet. 2020;395(10219):200-11. Published under the CC

BY 4.0 licence (https://creativecommons.org/licenses/by/4.0/

Inverse relationship between income level and sepsis incidence and mortality

Sepsis Care is the Bellwether for Quality of Care in Health Systems

85.0% of sepsis cases and **84.8% of sepsis related deaths** occurred in countries with low, low-middle, or middle sociodemographic indices (SDI), particularly in sub-Saharan Africa and South-East Asia.

88% of the World's Largest Killers occur in LMICs

90% of more than 10 million Sepsis Deaths per year occur in LMIC

The Intensive Connection

Original research

BMJ Global Health

Essential Emergency and Critical Care: a consensus among global clinical experts

Carl Otto Schell ⁽ⁱ⁾, ^{1,2,3} Karima Khalid, ^{4,5} Alexandra Wharton-Smith ⁽ⁱ⁾, ⁶ Jacquie Oliwa, ^{7,8} Hendry R Sawe ⁽ⁱ⁾, ⁹ Nobhojit Roy ⁽ⁱ⁾, ^{1,10,11} Alex Sanga, ¹² John C Marshall ⁽ⁱ⁾, ¹³ Jamie Rylance, ¹⁴ Claudia Hanson ⁽ⁱ⁾, ^{1,15} Raphael K. Kayambankadzanja, ^{16,17} Lee A Wallis ⁽ⁱ⁾ ¹⁸ Maria Linwe ⁽ⁱ⁾ ¹⁹ Tim Baker ⁽ⁱ⁾, ^{1,5,20} The EECC Collab *** frontiers** in Pediatrics

ABSTRACT

Wharton-Smith A, et al. Essential Emergency and Critical Care: a consensus among global clinical experts. *BMJ Global Health* 2021;6:e006585. doi:10.1136/ bmjgh-2021-006585

To cite: Schell CO, Khalid K,

Background Globally, critical illness results in million of deaths every year. Although many of these deaths are potentially preventable, the basic, life-saving care critically ill patients are often overlooked in health sys Essential Emergency and Critical Care (EECC) has bee

The Burden of Critical Illness in Hospitalized Children in Low- and Middle-Income Countries: Protocol for a Systematic Review and Meta-Analysis

OPEN ACCESS

Edited by: Yus Cualetto, Mayo Clinic, United States Reviewed by: A. M. Iqbal O'Meara, Virginia Commonwealth University, United States Yee Hul Mok, KK Women's and Chikiten's Teresa B. Kortz^{1,2}, Katie R. Nielsen^{3,4}, Rishi P. Medirata^{*}, Nicole F. O'Brien^{*}, Jan Hau Lee^{7,4}, Jonah E. Attebery^{*}, Em Carter Biewen^{*}, Arvan Coronado Munoz^{*}, Mary L. deAlm Shubhada Horli^{*}, Huntet Johnson^{*}, Miranjan Kissoon^{**,4*}, Amanda M. McCarthy^{**}, Carol Pineda^{*}, Konneth E. Remy Yemisi Takwong^{**,2*}, Mathwo O. Wien^{3,4**}, and Adnan T. Acute Lung Injury and Sepsis Investigators (PALISI) Netwo Global Health Subgroup

OPEN ACCESS

Edited by:

Arun Bansal, Post Graduate Institute of Medical Education and Research (PGIMER), India

Reviewed by:

METHODS published: 16 March 2022 doi: 10.3389/fped.2022.756643

Ruijiat Samransamruajki, Chulalongkorn University, Thailand Banani Poddar, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPC), India Suresh Kumar, Postgraduate Institute of Medical Educaton & Research, India METHODS published: 28 January 2022 doi: 10.3389/fped.2021.793326

Global PARITY: Study Design for a Multi-Centered, International Point Prevalence Study to Estimate the Burden of Pediatric Acute Critical Illness in Resource-Limited Settings

Calab Abbas¹¹, Adrian Holloway¹¹, Paula Caporal^{3,4}, Eliana López-Barón², Asya Agulnik⁹, Kenneth E. Remy^{7,8}, John A. Appiah⁹, Jonah Attebery¹⁰, Ericka L. Fink¹¹, Jan Hau Lee^{17,13}, Shubhada Hooll¹¹, Niranjan Kissoon¹¹, Erika Miller², Srinivas Murthy¹¹, Fiona Muttalib¹⁵, Katie Nielsen¹⁰, Maria Puerto-Torres⁶, Karla Rodrigues¹⁷, Firas Sakaan⁹, Adriana Teixeira Rodrigues¹⁷, Erica A. Tabor¹⁸, Amelie von Saint Andre-von Amim¹⁶, Matthew O. Wiens^{10,20,21}, William Blackwelder²⁰, David He³³, Teresa B. Kortz^{24,684} and Adnan T. Bhutta^{2,3649} on Behalf of the PALISI Global Health Subgroup the Global PARITY Investigators

Saving Children's Lives Mission:

Stop *preventable* deaths of children from pneumonia, diarrhea, and sepsis

EXECUTIVE BOARD 152nd session Agenda item 5 EB152(3) 1 February 2023

Integrated emergency, critical and operative care for universal health coverage and protection from health emergencies¹

The Executive Board, having considered the report of the Director-General,²

Decided to recommend to the Seventy-sixth World Health Assembly the adoption of the following resolution:

SCCM Founders

PROVIDE the ESSENTIALS

STRENGTHEN OUT ICUS

ACCC 2023 The Kornen S

CCM-ACCC 202

ACEC ----

105

4.

Challenges Facing Critical Care ir APEC/Japan/China/USA

- Medical system of
 - Taiwan
 - Low proportion of public sector
 - · Low cost, high efficiency
- Low level of minimal requirement of personnel and facility
 - Intensivist not required
 - High nurse-to-patient ratio
 - · Little help from other specialists
- Variability in level of care among ICU's
 - Big regional and intra-regional differences
- Distrust of medical community by the general population, media, and law makers

2023

Challenges toward 2030

Who, how, and how much, and HOW OFTEN do we have to train??

Concept of "Herd Immunity"

(83 to 94% coverage)

Educational Efficiency

Instructional design

- Deliberate practice and mastery learning
- Spaced learning
- Booster training
- · Lay rescuer training
- · Teamwork and leadership training

Local Implementation

Survival

In situ education

- Manikin fidelity
- · CPR feedback devices
- Gamified learning and virtual reality
- Precourse preparation
- Opioid overdose training

Provider Considerations

- Disparities in education
- Practitioner experience Willingne
- Willingness to provide CPR

ACLS Course participation

Medical Science

Linking Training to Patient Outcomes

Screening/Targeting Low Dose High Frequency

Simulated or Real Patient Performance Debriefing Performance Feedback

Mentorship

International Network for Simulation-based Pediatric Innovation, Research and Education

x## RE

The Future of...Critical Care Medicine

EMPOWERING THE NEXT GENERATION -INVESTMENT IN PREVENTABLE INFANT DEATHS BY A HEALTHY START _____ March 27, 2024, Taipei

March 2

APEC Asia-Pacific Economic Cooperation

EHPA Health Promotion Administration, Ministry of Health and Welfare

Did our founders have a crystal ball?

NIH Clinical Center--1955

www.imagesofsurgery.com

Formula for Survival Our Roadmap

Medical Science Quality Education Efficiency Ir

Local Implementation Efficiency

Evidence vs **Eminence-based** medicine We will struggle to get from anecdotes, ...to studies ...to evidence ...to guidelines ...to practice...to high performance...to saving more lives

...to <u>saving</u> high quality of <u>life</u>?

SEIPS 2.0 model.

SEIPS 2.0: A human factors framework for studying and improving the work of healthcare professionals and patients Holden, Carayon, Gurses, Hoonakker, Hundt, Ozok, Rivera-Rodriguez. Ergonomics 2013

Time-Dependence of Acute Cardiovascular Interventions

Time-to-thrombolysis in acute MI 70 Time is muscle ... No. lives saved per 1000 patients 60 treated with fibrinolytics 50 40 30 20 10 0 2-3 12-24 0-1 1-2 3-6 6-12 Time from onset of symptoms (h)

Time-to-epinephrine in Cardiac Arrest

Interval from cardiac arrest to epinephrine (minutes)

Time-to-shock in witnessed VF

Time-to-thrombolysis in Stroke

Impact of thrombolysis

Chain of Survival.....Survivorship

Current Solutions

Early identification and mitigation of deterioration is important because deterioration does not occur linearly

Situation Awareness: A New Model for Predicting and Preventing Patient Deterioration Patrick W. Brady, Derek S. Wheeler, Stephen E. Muething, Uma R. Kotagal Hospital Pediatrics May 2014, 4 (3) 143-146; DOI: 10.1542/hpeds.2013-0119

Leverage the Electronic Health Record

PICU GREEN 15 Patients								Refreshed 2 minutes ago 🔏	C Sear	ch All Admitted
Unit/Rm/Bed ▲	Patient Name	Age/Sex	Admission D	te Problem	New Rsit	Attend Prov	IP Med Rec Complete	PDMP Query	PICU GCS Score Pre- Illness	Hotspot
7EP-7E25-1			1				√ Yes	Yes	0	-
7EP-7E26-1						√ Yes	Yes	0	-	
7EP-7E28-1		0 1	/lg <1.0 Ca <0.9 Hyperkalemia (K > 7 x 2) **includes hemolyzed spec			√ Yes	Yes	0	-	
7EP-7E29-1		0 1		molyzed specir	n	√ Yes	Yes	0	-	
7EP-7E30-1				H < 7.1 lood (cc/kg) >20 in past 12 hours				Yes	0	-
7EP-7E31-1				CMO in past 24 hours					-	
7EP-7E33-1			0 1	lemodynamically significant arrhythmia	a within last 24	hrs	√ Yes	Yes	0	
7EP-7E34-1			0	tric Oxide >5 & Pulm HTN			√ Yes	No	0	-
7EP-7E34-2		1 S 0 Fi 0 V	ustained MAP > 20 cm/H2O 02>80% on NIPPV asoactive Meds			√ Yes	Yes	0	8	
7EP-7E36-1						√ Yes	Yes	0	-	
7EP-7E36-2			0 0	ardiac Dysfunction (low co-ox or on m	iilrinone)		√ Yes	Yes	0	-
7EP-7E38-1			10/2/16		•		√ Yes	Yes	0	8
7EP-7E38-2			10/11/17				√ Yes	Yes	0	-

Prepare for intervention!

One Size may not fit all!.... But, the principles of: -prediction -detection -assessment -teamwork -communication -monitoring -feedback -quality are the same!!

Association of Simulation Training With Rates of Medical Malpractice Claims Among Obstetrician–Gynecologists

Schaffer, Adam C. MD, MPH; Babayan, Astrid PhD; Einbinder, Jonathan S. MD, MPH; Sato, Luke MD; Gardner, Roxane MD, DSc

Author Information 😔

Obstetrics & Gynecology: August 2021 - Volume 138 - Issue 2 - p 246-252 doi: 10.1097/AOG.00000000004464 DOI: 10.1111/pan.13652

RESEARCH REPORT

Pediatric Anesthesia WILEY

The impact of simulation-based medical education on resident management of emergencies in pediatric anesthesiology

Aditee P. Ambardekar¹ | Stephanie Black² | Devika Singh² | Justin L. Lockman² | Allan F. Simpao² | Alan J. Schwartz² | Roberta L. Hales³ | David L. Rodgers⁴ | Harshad G. Gurnaney²

ORIGINAL ARTICLES | ARTICLES IN PRESS

Purchase Subscribe

Improving Pediatric Readiness and Clinical Care in General Emergency Departments: A Multicenter Retrospective Cohort Study

Published: September 05, 2021 • DOI: https://doi.org/10.1016/j.jpeds.2021.08.084

A critical review of simulation-based mastery learning with translational outcomes

William C McGaghie,¹ Saul B Issenberg,² Jeffrey H Barsuk³ & Diane B Wayne³

Medical Education 2014: 48: 375–385 doi:10.1111/medu.12391

Evolution to "Low Dose – High Frequency" training paradigms

В

Time

AND TRANSPORT
RESUSCITATION
OFFICE JOINS OF THE RASPLES DESIGNED ADDRESS.
(a) The second second

Resuscitation: Volume 93, August 2015, Pages 1-7

Frequent brief on-site simulation training and <u>reduction in 24-h neonatal mortality</u> — An educational intervention study

Estomih Mduma, Hege Ersdal, Erling Svensend Hussein Kidanto, Bjørn Auestadb, JeffreyPerlman

Review

Using clinical simulation to study how to improve quality and safety in healthcare

Guillaume Lamé 💿 , Mary Dixon-Woods

ABSTRACT

THIS Institute (The Healthcare Improvement Studies Institute), University of Cambridge, Cambridge, UK

Correspondence to

Dr Guillaume Lamé, THIS Institute (The Healthcare Improvement Studies Institute), University of Cambridge, Cambridge CB2 0AH, UK; guillaume.lame@thisinstitute. cam.ac.uk

Received 22 June 2018 Revised 3 September 2018 Accepted 6 September 2018 Published Online First 29 September 2018 Simulation can offer researchers access to events that can otherwise not be directly observed, and in a safe and controlled environment. How to use simulation for the study of how to improve the quality and safety of healthcare remains underexplored, however. We offer an overview of simulation-based research (SBR) in this context. Building on theory and examples, we show how SBR can be deployed and which study designs it may support. We discuss the challenges of simulation for healthcare improvement research and how they can be tackled. We conclude that using simulation in the study of healthcare improvement is a promising approach that could usefully complement established research methods.

SIMULATION-BASED RESEARCH DESIGNS

Different research designs are made possible using simulation-based techniques.^{13 14} We start by offering a broad overview of how simulation might be used in research, and then provide a short description and examples of three types of studies (descriptive, theory-testing and generation, and evaluating interventions) that might deploy simulation. We discuss the particular issues that may apply in multicentre studies. Finally, we discuss the potential for combining SBR with other methods in mixed-methods studies.

Simulation as a way of studying clinical settings

Simulation for research classically seeks to reproduce features of a real-world phenomenon so that

ORIGINAL RESEARCH

In situ simulation: detection of safety threats and teamwork training in a high risk emergency department

Mary D Patterson, ^{1,2} Gary Lee Geis, ^{1,3,4} Richard A Falcone,⁵ Thomas LeMaster, ¹ Robert L Wears^{6,7}

¹The Center for Simulation and Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
²Akron Children's Hospital Simulation Center for Safety and Reliability, Akron Children's Hospital, Akron, Ohio, USA
³Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
⁴Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
⁵Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
⁶Department of Emergency Medicine, University of Florida, Jacksonville, Florida, USA
⁷Clinical Safety Research Unit, Imperial College, London, UK, UK Patterson M. BMJ Quality and Safety 2013

42

SIMULATION ROOMS

Education

CHOP Care Network

Broomall Cape May Central Bucks Coatesville Drexel Hill Flourtown Gibbsboro Haverford Haverford Indian Valley Kennett Square Media Mt. Laurel Paoli West Chester Karabots Cobbs Creek South Philly Chadds Ford Chestnut Hill Newton North Hills Pottstown Roxborough Salem Road Salem Road Samithville Somers Point Springfield West Chester

ECMO Time to Cannulation 35 mins

MIBG therapy: Radiation for Neuroblastoma

Process and Procedure Testing Oncology PICU

NICU-Pathway & Process Refinement

- Request: The NICU Sim champions developed IPE simulations to review, test and/or reconstruct real events, pathways and processes.
 - Pulmonary Hemorrhage Management

Fact and reaction

Installer for allowy addy and management

> Major Pulmonary Hemorrhage Management Bloody secretions via ETT/oropharynx/nares

Consider intub safety and r

Ion-acute treatment and evaluation:) Labs: ABG, CBC w/diff, PT/PTT/fibrinogen,

with urea cycle defect.

possible increased pul venous pressure

Vitamin K

Correct coagulopathy if presen PRBCs if indicated

Differential Diagnosis for Major Pu • Surfactant administration

administration

administratio

Ddimer, ammonia level (can be associated

1) Ensure given after birth 2) Give if history of liver failure (1mg IM or SubQ) onsider surfactant administration

actant administration Typically occurs within several hours o

Increased risk with possible PDA with

Associated with viral or gram nega

sive volume replacement due to

Increase PEEP by 1 to 3 Suction ETT, avoid trauma

Consider Epinephrine via ETT:

platelets

Idiopathic

tracheostomy) Postasphyxiation Open PDA or other large left to right shunt

Consider Novo Seve

Signs of persistent puln hemorrhage?

Overtransfusion of PRBCs

nnominate Vein Fistula (cor

1) Suction before administration and

2) Dose: 0.05mg/kg (0.1mg/ml)

 May repeat x1 in 5 minutes isider transfusion with FFP, PRBCs ar

hold suction for 5 min following

- Acute Treatment of Hyperkalemia
- Blood Transfusion Exchange

Simulation-based Clinical System Testing

Highlights- Space Design

Covid Sims

Train the Trainer at CHOP

Task Training: Training to competence...Excellence

Orientation and Practice Procedure Skills first in the Classroom:

Orientation and Practice Procedures next at the bedside "in situ"

Practice Rare and Stressful Events:

Use Self-Directed Learning:

The Children's Hospital *of* Philadelphia[®]

Walk Through New Procedures:

Moulage and Innovation

Blindfold Example

• The Children's Hospital of Philadelphia®

Helping Babies Breathe pair learning/teaching

Improving Pediatric Acute Care Through Simulation (ImPACTS)

How Failures breed Success !!!

International Network for Simulation-Based Pediatric Innovation, Research and Education (INSPIRE) Network

Ouality of care with simulation

Research

JAMA Pediatrics | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Differences in the Quality of Pediatric Resuscitative Care Across a Spectrum of Emergency Departments

Marc Auerbach, MD, MSci; Travis Whitfill, MPH; Marcie Gawel, MSN; David Kessler, MD, MSc; Barbara Walsh, MD; Sandeep Gangadharan, MD; Melinda Fiedor Hamilton, MD, MSc, FAHA; Brian Schultz, MD; Akira Nishisaki, MD; Khoon-Yen Tay, MD; Megan Lavoie, MD; Jessica Katznelson, MD; Robert Dudas, MD; Janette Baird, PhD; Vinay Nadkarni, MD; Linda Brown, MD, MSCE

IMPORTANCE The quality of pediatric resuscitative care delivered across the spectrum of emergency departments (EDs) in the United States is poorly described. In a recent study, more than 4000 EDs completed the Pediatric Readiness Survey (PRS); however, the correlation of PRS scores with the quality of simulated or real patient care has not been described.

Supplemental content

Auerbach M, Whitfill T. JAMA Pediatr. 2016. 66

Yale school of medicine

Primary outcome: quality of care measures

Improving care in hospitals through data reporting

Education : Training citizens

Tele-simulation

Tele-simulation" is "a process by which <u>telecommunication</u> and <u>simulation</u> resources are utilized to provide education, training, and/or assessment to learners at <u>an off-site</u> location.

Off-site location refers to a distant site that would preclude training, without the use of telecommunication resources

Several Studies suggest Distance Simulation Useful for Global Health Education

Cureus

Open Access Technical

Report

DOI: 10.7759/cureus.16317

How to Use TeleSimBox "Off the Shelf" to Connect Remote Content Experts With In-Person Simulation Participants

Elizabeth Sanseau¹, Robert Cameron Sooby², Maybelle Kou³, Marc Auerbach⁴, Khoon-Yen Tay⁵

 General Pediatrics/Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, USA 2. Emergency Medicine, Jefferson Health Northeast, Philadelphia, USA 3. Emergency Department, Inova Children's Hospital, Falls Church, USA 4. Department of Pediatrics, Section of Pediatric Emergency Medicine, Yale University, New Haven, USA 5. Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, USA

Corresponding author: Elizabeth Sanseau, elizabeth.sanseau@gmail.com

Review > Simul Healthc. 2023 Apr 1;18(2):100-107. doi: 10.1097/SIH.00000000000663. Epub 2022 Apr 5.

Setting an Agenda: Results of a Consensus Process on Research Directions in Distance Simulation

Isabel T Gross ¹¹, Timothy C Clapper, Geethanjali Ramachandra, Anita Thomas, Anne Ades, Barbara Walsh, Florian Kreuzer, Rachel Elkin, Michael Wagner, Travis Whitfill, Todd P Chang, Jonathan P Duff, Ellen S Deutsch, Ruth M Loellgen, Janice C Palaganas, Jabeen Fayyaz, David Kessler, Aaron W Calhoun

Affiliations + expand PMID: 36989108 DOI: 10.1097/SIH.00000000000663

Abstract

Background: The COVID-19 pandemic forced rapid implementation and refinement of distance simulation methodologies in which participants and/or facilitators are not physically colocated. A

Frontiers | Frontiers in Pediatrics

ORIGINAL RESEARCH published: 26 July 2022 doi: 10.3389/fped.2022.904846

Low-Cost "Telesimulation" Training Improves Real Patient Pediatric Shock Outcomes in India

Ebor Jacob G. James^{1,2*}, Siva Vyasam¹, Shakthi Venkatachalam³, Elizabeth Sanseau⁴, Kyle Cassidy⁵, Geethanjali Ramachandra^{2,6}, Grace Rebekah⁷, Debasis D. Adhikari¹, Ellen Deutsch^{3,a}, Akira Nishisaki^{3,8} and Vinay M. Nadkarni^{3,a}

¹ Pediatric Critical Care, Department of Pediatrics, Christian Medical Collega, Veliore, India, ³ Pediatric Simulation Training and Research Society of India, Hyderabad, India, ³ Center for Simulation, Advanced Education and Innovation, The Children's Hospital of Philadelphia, Philadelphia, PA, United States, ⁴ Division of Emergency Medicine, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States, ⁴ Anrenberg School for Communication, University of Pennsylvania, Philadelphia, PA, United States, ⁶ Objectment of Pediatric Intensive Care, Krishna Institute of Medical Sciences, Secunderabad, India, ³ Department of Biostatistics, Christian Medical College, Veliore, India, ⁸ Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, Philadelphia, Philadelphia, Philadelphia, PA, United States, ⁴ Department of Hospital Philadelphia, PA, United States
Hemodynamics of patients with shock at the end of first hour treatment

Median % Completion Task np Chart

Patient Selection and Quality of Care -----Patient \rightarrow Intervention \rightarrow Outcome

Quality

of Life

Big Data...Artificial Intelligence..."Virtual Command Centers" and Decision Support...

Resuscitation Bays of the Future

"Resuscitation Bay of the Future" Live-Capture Video, Communication, Ultrasound

VIPER Network (Videography In Pediatric Emergency Room)

Eye-Tracking technology

Geolocation and "Resuscitation Room of the Future"

Creating INSTANT REPLAY for in-hospital after Event Review Similar to...

Learning more about provider capabilities Testing Fatigue and Provider Performance

Stepstool

No stepstool

Wearable and Implantable Sensors For Biomedical Applications

Koydemir HC, et al. Annu Rev Anal Chem 2018; 11: 6.1-6.20

Understanding Team Task Load, Stress, and Team Performance with Wearables

CHOP Trauma team members S1 & S2 wear fNIR headband devices during simulation to correlate Task Load with Brain Blood Flow

Not just in resource-rich, but also contextualized to resource-limited settings

With attention to Diversity, Equity and Inclusion

Linking Human Factors and Performance

Emotion

Psychological Safety

Mindful Reflection

Post-Intensive Care Syndrome (PICS and PICS-F)

Needham DM et al. CCM 2012

Trajectories of Recovery: The Big Hit

Iwashyna, TJ. AJRCCM 2012; 186:302-304

Trajectories of Recovery: The Slow Burn

Trajectories of Recovery: Relapsing Recurrences

Sawyer, 2020; Topjian, 2020

Social Media Landscape

Clinical Trials, <u>Adaptive Design</u>, <u>Comparative Effectiveness</u>, Registries

The Near Future

The Far Future

Circumferential chest compressions/Load Distributing Band

Automated Active Compression – Decompression CPR

Impedance Threshold Device Augmentation

Interposed Abdominal Compressions

Human <u>AND</u> Machine!

Engineering,....Modeling....Informatics... Usability Testing

Alternative Perfusion Techniques and Conditions to Improve Recovery

- Controlled Reperfusion
- Ultrasonic Micro bubbles
- Direct Peritoneal Resuscitation
- Rapid and Profound Cooling (Emergency Preservation Resuscitation)
- Carbon Monoxide
- Brain Derived
 Neurotrophic Factor
- Nannotech guided vascular access
 Chemical Defibrillation
- Chemical Hibernation

Mitochondrial Resuscitation

Brain injury

Cardiac Arrest Reperfusion Injury

Hemorrhagic Shock

Sepsis Inflammation

The Future of Critical Care

- **1. Learning Healthcare Systems**
- 2. Big Data
- 3. Liberation
- 4. Mobility...PANDEM-ic
- 5. THRIVE...PICS
- 6. Embedded, Just-in-Time training
- 7. Resilience and Wellness
- 8. Care (CARING!) everywhere

Formula for Survivorship Breaking Barriers and Changing the Culture

Survivorship

Medical Science Quality Education Efficiency

Implementation Efficiency
INSPIRE: Helping babies breathe

Sustainability "From Donorship to Ownership"

Green ICU

Carbon footprint of health care

Carbon footprint of clinical care

Life cycle assessment of phlebotomy

Economy strategies along the chain for medical consumables

ICU Management & Practice 3 - 2023

EMPOWERING THE NEXT GENERATION -INVESTMENT IN PREVENTABLE INFANT DEATHS

BY A HEALTHY START ____ March 27, 2024, Taipei

HIPA Health Promotion Adminis

Advancement and Future Directions in Pediatric Critical Care

Vinay Nadkarni MD, MS, FCCM

2023 President, Society of Critical Care Medicine

Professor, Department of Anesthesiology, Critical Care and Pediatrics The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine

*I will ensure my presentation promotes thoughtful inclusion of underrepresented communities and content relevant to diversity and equity in continuing education activities.